	Answer	Marks	Guidance
1	$\left(\begin{array}{l} 10 \\ 5 \\ -5 \end{array}\right)=\lambda\left(\begin{array}{l} 3 \\ 2 \\ -1 \end{array}\right)+\mu\left(\begin{array}{l} -1 \\ 1 \\ 2 \end{array}\right)$	M1	required form, can be soi from two or more correct equations
	$\Rightarrow \quad 3 \lambda-\mu=10$	M1	forming at least two equations and attempting to solve oe
	$2 \lambda+\mu=5 \Rightarrow 5 \lambda=15, \lambda=3$	A1	w
	$\Rightarrow \quad 9-\mu=10, \mu=-1$	A1	
	$-5=-\lambda+2 \mu, \quad-5=-3+2 \times-1$ true	A1	verifying third equation, do not give BOD
			accept a statement such as $\left(\begin{array}{l}10 \\ 5 \\ -5\end{array}\right)=3\left(\begin{array}{l}3 \\ 2 \\ -1\end{array}\right)+-1\left(\begin{array}{l}-1 \\ 1 \\ 2\end{array}\right)$ as
	coplanar		verification Must clearly show that the solutions satisfy all the equations. oe independent of all above marks
		[6]	

$$
\begin{array}{ll}
\mathbf{2} & 4 \mathbf{j}-3 \mathbf{k}=\lambda \mathbf{a}+\mu \mathbf{b} \\
& =\lambda(2 \mathbf{i}+\mathbf{j}-\mathbf{k})+\mu(4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\
\Rightarrow \quad & 0=2 \lambda+4 \mu \\
& 4=\lambda-2 \mu \\
& -3=-\lambda+\mu \\
\Rightarrow & \lambda=-2 \mu, 2 \lambda=4 \Rightarrow \lambda=2, \mu=-1
\end{array}
$$

equating components at least two correct equations

A1, A1
[5]

$3 \quad \overrightarrow{B A}=\left(\begin{array}{l}-4 \\ 1 \\ -3\end{array}\right), \overrightarrow{B C}=\left(\begin{array}{l}2 \\ 5 \\ -1\end{array}\right)$	B1	soi, condone wrong sense
$\overrightarrow{B A} \cdot \overrightarrow{B C}=\left(\begin{array}{l}-4 \\ 1 \\ -3\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 5 \\ -1\end{array}\right)=(-4) \times 2+1 \times 5+(-3) \times(-1)$	M1	scalar product
$\Rightarrow \text { angle } \mathrm{ABC}=90^{\circ}=-8+5+3=0$	A1	$=0$
Area of triangle $=1 / 2 \times \mathrm{BA} \times \mathrm{BC}$ $=\frac{1}{2} \times \sqrt{(-4)^{2}+1^{2}+3^{2}} \times \sqrt{\left.2^{2}+5^{2}+-1\right)^{2}}$	M1	area of triangle formula oe
$=1 / 2 \times \sqrt{ } 26 \times \sqrt{ } 30$	M1	length formula
$=13.96$ sq units	$\begin{gathered} \text { A1 } \\ {[6]} \end{gathered}$	accept 14.0 and $\sqrt{ } 195$

